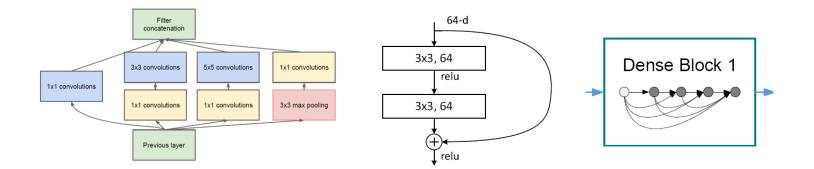
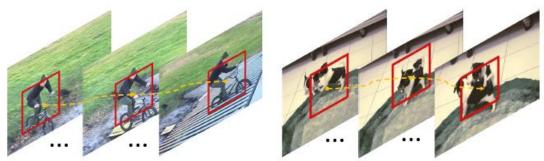


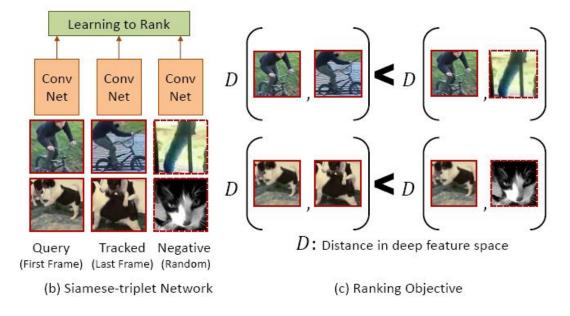
A Brief Introduction to Unsupervised Representation Learning



Introduction

1. What is representation learning?

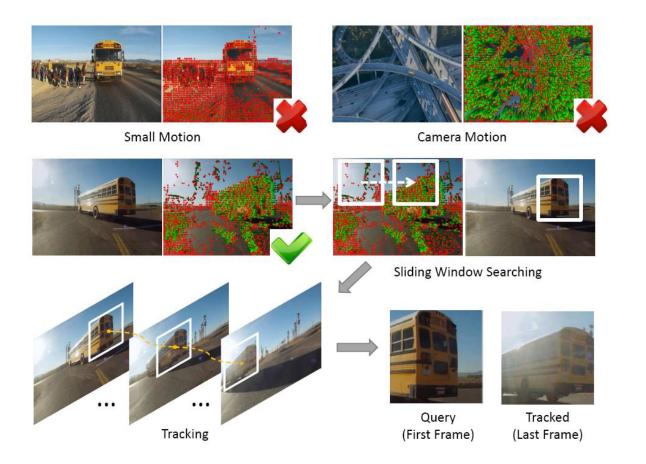

e.g., **ICLR:** International Conference of Learning Representation Established by *Lecun*, *Hinton* and *Bengio* in 2013.



Unsupervised Learning of Visual Representations using Videos

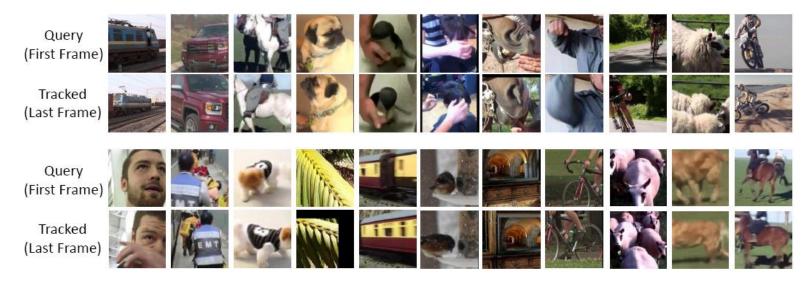
Xiaolong Wang, Abhinav Gupta Robotics Institute, Carnegie Mellon University

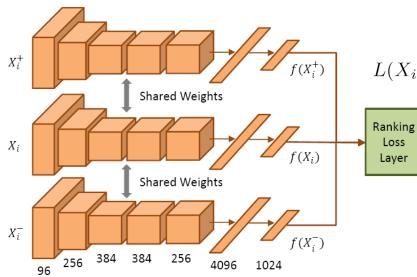
(a) Unsupervised Tracking in Videos



University of the strength of

Unsupervised Learning of Visual Representations using Videos


1. Obtain SURF interest points and use Improved Dense Trajectories (IDT) for point motion estimation.


2. Utilize KCF tracker to track the object.

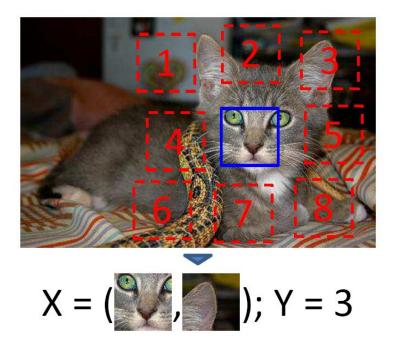
Unsupervised Learning of Visual Representations using Videos

 $L(X_i, X_i^+, X_i^-) = \max\{0, D(X_i, X_i^+) - D(X_i, X_i^-) + M\}$

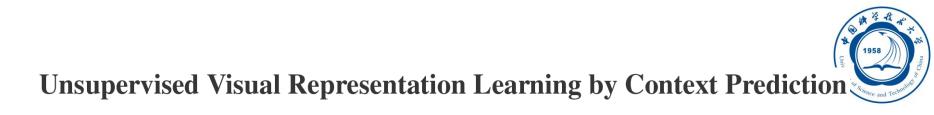
Unsupervised Learning of Visual Representations using Videos

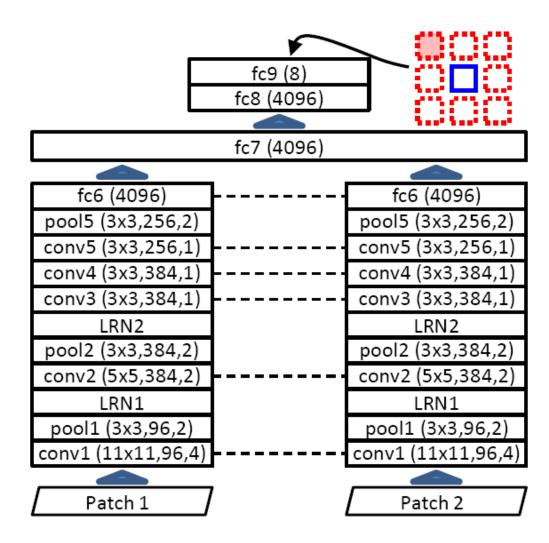
Table 1. mean Average Precision (mAP) on VOC 2012. "external" column shows the number of patches used to pre-train unsupervised-CNN.

	-	1																				
VOC 2012 test	external	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
scratch	0	66.1	58.1	32.7	23.0	21.8	54.5	56.4	50.8	21.6	42.2	31.8	49.2	49.8	61.6	52.1	25.1	52.6	31.3	50.0	49.1	44.0
scratch (3 ensemble)	0	68.7	61.2	36.1	25.7	24.3	58.9	58.8	55.3	24.4	43.5	36.7	53.0	53.8	65.6	54.3	27.3	53.5	38.3	54.6	51.8	47.3
unsup + ft	1.5M	68.8	62.1	34.7	25.3	26.6	57.7	59.6	56.3	22.0	42.6	33.8	52.3	50.3	65.6	53.9	25.8	51.5	32.3	51.7	51.8	46.2
unsup + ft	5M	69.0	64.0	37.1	23.6	24.6	58.7	58.9	59.6	22.3	46.0	35.1	53.3	53.7	66.9	54.1	25.4	52.9	31.2	51.9	51.8	47.0
unsup + ft	8M	67.6	63.4	37.3	27.6	24.0	58.7	59.9	59.5	23.7	46.3	37.6	54.8	54.7	66.4	54.8	25.8	52.5	31.2	52.6	52.6	47.5
unsup + ft (2 ensemble)	6.5M	72.4	66.2	41.3	26.4	26.8	61.0	61.9	63.1	25.3	51.0	38.7	58.1	58.3	70.0	56.2	28.6	56.1	38.5	55.9	54.3	50.5
unsup + ft (3 ensemble)	8M	73.4	67.3	44.1	30.4	27.8	63.3	62.6	64.2	27.7	51.1	40.6	60.8	59.2	71.2	58.5	28.2	55.6	39.4	58.0	56.1	52.0
unsup + iterative ft	5M	67.7	64.0	41.3	25.3	27.3	58.8	60.3	60.2	24.3	46.7	34.4	53.6	53.8	68.2	55.7	26.4	51.1	34.3	53.4	52.3	48.0
RCNN 70K		72.7	62.9	49.3	31.1	25.9	56.2	53.0	70.0	23.3	49.0	38.0	69.5	60.1	68.2	46.4	17.5	57.2	46.2	50.8	54.1	50.1
RCNN 70K (2 ensemble)		75.3	68.3	53.1	35.2	27.7	59.6	54.7	73.4	26.5	53.0	42.2	73.1	66.1	71.0	48.5	21.7	59.2	50.8	55.2	58.0	53.6
RCNN 70K (3 ensemble)		74.6	68.7	54.9	35.7	29.4	61.0	54.4	74.0	28.4	53.6	43.0	74.0	66.1	72.8	50.3	20.5	60.0	51.2	57.9	58.0	54.4
RCNN 200K (big stepsize)		73.3	67.1	46.3	31.7	30.6	59.4	61.0	67.9	27.3	53.1	39.1	64.1	60.5	70.9	57.2	26.1	59.0	40.1	56.2	54.9	52.3

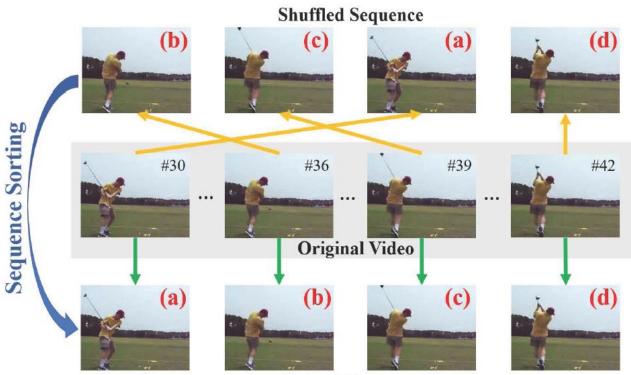

University of states and Technicity


Unsupervised Visual Representation Learning by Context Prediction


Abhinav Gupta¹ Alexei A. Efros² Carl Doersch^{1,2} ² Dept. of Electrical Engineering and Computer Science School of Computer Science 1 University of California, Berkeley Carnegie Mellon University Example: Question 1: Question 2:

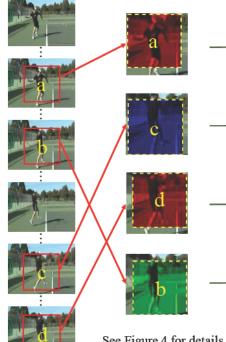


Unsupervised Visual Representation Learning by Context Prediction

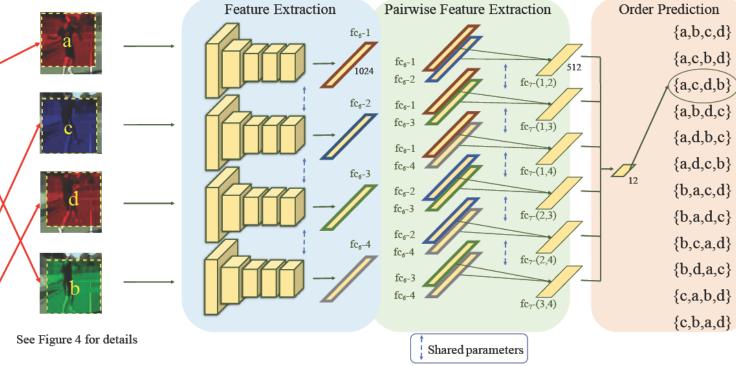


Unsupervised Representation Learning by Sorting Sequences

Hsin-Ying Lee¹ Jia-Bin Huang² Maneesh Singh³ Ming-Hsuan Yang¹ ¹University of California, Merced ²Virginia Tech ³Verisk Analytics http://vllab1.ucmerced.edu/~hylee/OPN/

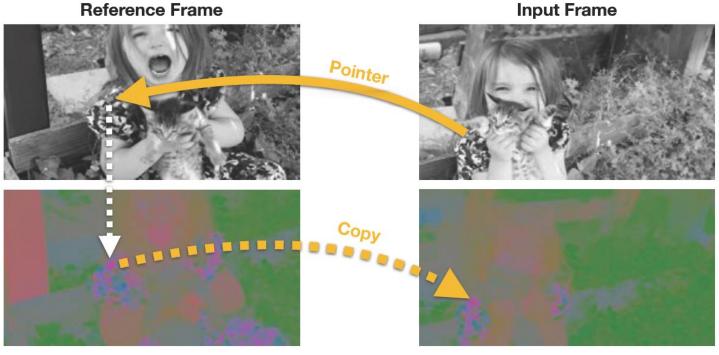


Ordered Sequence


Unsupervised Representation Learning by Sorting Sequences

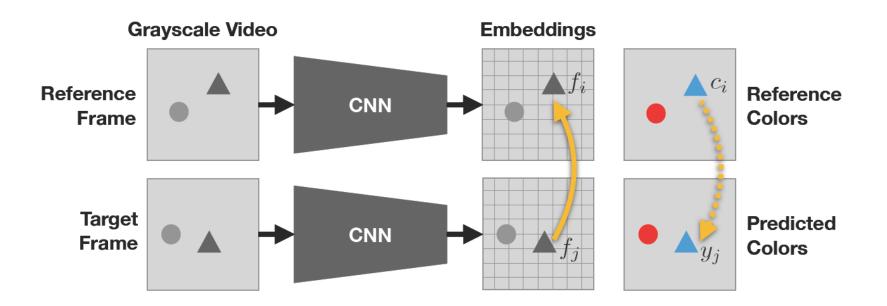
Unsupervised Representation Learning by Sorting Sequences

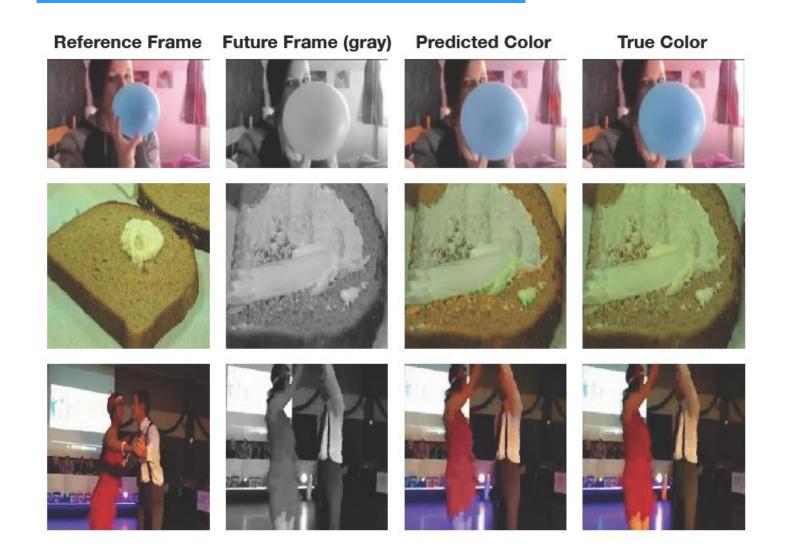
Initialization	CaffeNet	VGG-M-2048	Initialization	CaffeNet	VGG-M-2048	
random	47.8	51.1	random	16.3	18.3	
ImageNet	67.7	70.8	Imagenet	28.0	35.3	
Misra et al. [25]	50.2	-	Misra et al. [25]	18.1	-	
Purushwalkam et al. [31]*	-	55.4	Purushwalkam et al. [31]*	-	23.6	
Vondrick et al. [40] [†]	52.1	-	hinom	20.9	21.0	
binary	51.6	56.8	binary 2 targle ODN			
3-tuple Concat	52.8	57.0	3-tuple OPN	21.3	21.5	
3-tuple OPN	53.2	58.3	4-tuple OPN	21.6	21.9	
4-tuple Concat	55.2	59.0	Misra et al. [25] (UCF)	15.2	-	
4-tuple OPN	56.3	59.8	4-tuple OPN (UCF)	22.1	23.8	


Table 4: Results of the Pascal VOC2007 classification and detection datasets.

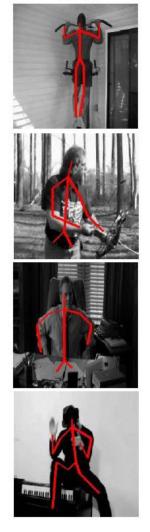
Method	Pretraining time	Source	Supervision	Classification	Detection
Krizhevsky et al. [18]	3 days	ImageNet	labeled classes	78.2	56.8
Doerch et al. [7]	4 weeks	ImageNet	context	55.3	46.6
Pathak et al. [30]	14 hours	ImagetNet+StreetView	context	56.5	44.5
Norrozi et al. [27]	2.5 days	ImageNet	context	68.6	51.8
Zhang et al. [44]	-	ImageNet	reconstruction	<u>67.1</u>	<u>46.7</u>
Wang and Gupta (color) [42]	1 weeks	100k videos, VOC2012	motion	58.4	44.0
Wang and Gupta (grayscale) [42]	1 weeks	100k videos, VOC2012	motion	<u>62.8</u>	47.4
Agrawal et al. [2]	-	KITTI, SF	motion	52.9	41.8
Misra et al. [25]	-	< 10k videos	motion	54.3	39.9
Ours (OPN)	< 3 days	< 30k videos	motion	63.8	<u>46.9</u>

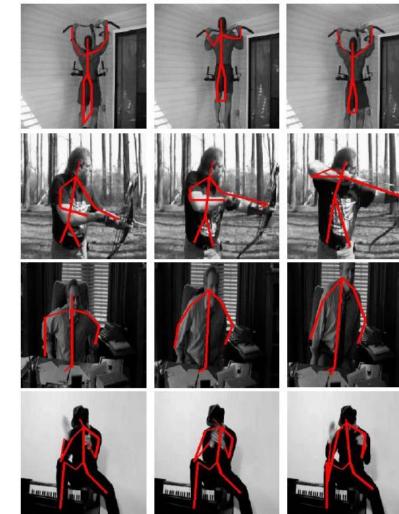
Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, Kevin Murphy


Google Research


Reference Colors

Target Colors





Inputs

Predicted Skeleton

Summary

- 1. Encoder-Decoder
- 2. Context
- 3. Motion
- 4. Color

••••

Typically, erase some known information and further recover it for self-supervised (or unsupervised) learning.

Thank you !